The purpose of this study was to combine all available information on the state of Lake Pertusillo (Basilicata, Italy), both in the field and published, which included Sentinel-2A satellite data, to understand algal blooms in a lacustrine environment impacted by petroleum hydrocarbons. Sentinel-2A data was retrospectively used to monitor the state of the lake, which is located near the largest land-based oil extraction plant in Europe, with particular attention to chlorophyll a during algal blooms and petroleum hydrocarbons. In winter 2017, a massive dinoflagellate bloom of Peridinium umbonatum and a simultaneous presence of hydrocarbons were observed at the lake surface. Furthermore, a recent study using metagenomic analyses carried out three months later identified a hydrocarbonoclastic microbial community specialized in the degradation aromatic and nitroaromatic hydrocarbons. In this study, Sentinel-2A imagery was able to detect the presence of chlorophyll a in the waters, while successfully distinguishing the signal from that of hydrocarbons. Remotely sensed results confirmed surface reference measurements of lacustrine phytoplankton, chlorophyll a, and the presence of hydrocarbons during algal blooms, thereby explaining the presence of the hydrocarbonoclastic microbial community found in the lake three months after the oil spill event. The combination of emerging methodologies such as satellite systems and metagenomics represent an important support methodology for describing complex contaminations in diverse ecosystems.

Remote Sensing Detection of Algal Blooms in a Lake Impacted by Petroleum Hydrocarbons / Laneve, G.; Bruno, M.; Mukherjee, A.; Messineo, V.; Giuseppetti, R.; De Pace, R.; Magurano, F.; D’Ugo, E.. - In: REMOTE SENSING. - ISSN 2072-4292. - 14:1(2022), pp. 1-18. [10.3390/rs14010121]

Remote Sensing Detection of Algal Blooms in a Lake Impacted by Petroleum Hydrocarbons

Laneve, G.
;
2022

Abstract

The purpose of this study was to combine all available information on the state of Lake Pertusillo (Basilicata, Italy), both in the field and published, which included Sentinel-2A satellite data, to understand algal blooms in a lacustrine environment impacted by petroleum hydrocarbons. Sentinel-2A data was retrospectively used to monitor the state of the lake, which is located near the largest land-based oil extraction plant in Europe, with particular attention to chlorophyll a during algal blooms and petroleum hydrocarbons. In winter 2017, a massive dinoflagellate bloom of Peridinium umbonatum and a simultaneous presence of hydrocarbons were observed at the lake surface. Furthermore, a recent study using metagenomic analyses carried out three months later identified a hydrocarbonoclastic microbial community specialized in the degradation aromatic and nitroaromatic hydrocarbons. In this study, Sentinel-2A imagery was able to detect the presence of chlorophyll a in the waters, while successfully distinguishing the signal from that of hydrocarbons. Remotely sensed results confirmed surface reference measurements of lacustrine phytoplankton, chlorophyll a, and the presence of hydrocarbons during algal blooms, thereby explaining the presence of the hydrocarbonoclastic microbial community found in the lake three months after the oil spill event. The combination of emerging methodologies such as satellite systems and metagenomics represent an important support methodology for describing complex contaminations in diverse ecosystems.
2022
Sentinel-2A; Lake Pertusillo; chlorophyll a; algal blooms; oil spill; metagenome
01 Pubblicazione su rivista::01a Articolo in rivista
Remote Sensing Detection of Algal Blooms in a Lake Impacted by Petroleum Hydrocarbons / Laneve, G.; Bruno, M.; Mukherjee, A.; Messineo, V.; Giuseppetti, R.; De Pace, R.; Magurano, F.; D’Ugo, E.. - In: REMOTE SENSING. - ISSN 2072-4292. - 14:1(2022), pp. 1-18. [10.3390/rs14010121]
File allegati a questo prodotto
File Dimensione Formato  
Laneve_Remote-sensing_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.81 MB
Formato Adobe PDF
4.81 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1599821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact