We present a Bayesian approach to a class of counting models for capture–recapture in presence of “one–inflation”. One–inflation has received has received an increasing attention in capture–recapture literature in recent years, particularly in estimating the size of illegal populations. The phenomenon consists in the observation of an excess of individuals cap- tured exactly once. If we do not explicitly model this aspect in the counting distribution, we can overestimate the population size. Bayesian model selection and the role of prior distributions are discussed. Applications to real data for the estimate of the size of some illegal populations are used to illustrate the proposed methodology.

Bayesian one-inflated models for population size estimation / Tuoto, Tiziana; DI CECCO, Davide; Tancredi, Andrea. - (2021), pp. 1552-1567. (Intervento presentato al convegno Joint Statistica Meeting tenutosi a Virtuale).

Bayesian one-inflated models for population size estimation

Tiziana Tuoto
;
Davide Di Cecco
Membro del Collaboration Group
;
Andrea Tancredi
2021

Abstract

We present a Bayesian approach to a class of counting models for capture–recapture in presence of “one–inflation”. One–inflation has received has received an increasing attention in capture–recapture literature in recent years, particularly in estimating the size of illegal populations. The phenomenon consists in the observation of an excess of individuals cap- tured exactly once. If we do not explicitly model this aspect in the counting distribution, we can overestimate the population size. Bayesian model selection and the role of prior distributions are discussed. Applications to real data for the estimate of the size of some illegal populations are used to illustrate the proposed methodology.
2021
Joint Statistica Meeting
One-inflation; Capture-recapture; Dirichlet Processes Mixture
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Bayesian one-inflated models for population size estimation / Tuoto, Tiziana; DI CECCO, Davide; Tancredi, Andrea. - (2021), pp. 1552-1567. (Intervento presentato al convegno Joint Statistica Meeting tenutosi a Virtuale).
File allegati a questo prodotto
File Dimensione Formato  
Tancredi_Bayesian-one-inflated-JSM_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Contatta l'autore
Tancredi_JSM_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 95.58 kB
Formato Adobe PDF
95.58 kB Adobe PDF
Tancredi_frontespizio-JSM_2021.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 181.52 kB
Formato Adobe PDF
181.52 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1593010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact