Abstract We study trivial multiple zeta values in Tate algebras. These are particular examples of the multiple zeta values in Tate algebras introduced by the second author. If the number of variables involved is “not large” in a way that is made precise in the paper, we can endow the set of trivial multiple zeta values with a structure of module over a non-commutative polynomial ring with coefficients in the rational fraction field over ${mathbb{F}}_q$. We determine the structure of this module in terms of generators and we show how in many cases, this is sufficient for the detection of linear relations between Thakur’s multiple zeta values.

Trivial multiple zeta values in Tate algebras / Gezmi(c(s)), O; Pellarin, F. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - (2021). [10.1093/imrn/rnab104]

Trivial multiple zeta values in Tate algebras

F Pellarin
2021

Abstract

Abstract We study trivial multiple zeta values in Tate algebras. These are particular examples of the multiple zeta values in Tate algebras introduced by the second author. If the number of variables involved is “not large” in a way that is made precise in the paper, we can endow the set of trivial multiple zeta values with a structure of module over a non-commutative polynomial ring with coefficients in the rational fraction field over ${mathbb{F}}_q$. We determine the structure of this module in terms of generators and we show how in many cases, this is sufficient for the detection of linear relations between Thakur’s multiple zeta values.
2021
multiple zeta values; positive characteristic arithmetic
01 Pubblicazione su rivista::01a Articolo in rivista
Trivial multiple zeta values in Tate algebras / Gezmi(c(s)), O; Pellarin, F. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - (2021). [10.1093/imrn/rnab104]
File allegati a questo prodotto
File Dimensione Formato  
Gezmi¸s_Trivial_2021.pdf.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 725.3 kB
Formato Adobe PDF
725.3 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1592924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact