Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose–response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study re-ports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation.

Glyphosate-eating fungi. Study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it / Spinelli, Veronica; Ceci, Andrea; Dal Bosco, Chiara; Gentili, Alessandra; Persiani, Anna Maria. - In: MICROORGANISMS. - ISSN 2076-2607. - 9:11(2021). [10.3390/microorganisms9112179]

Glyphosate-eating fungi. Study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it

Spinelli, Veronica
;
Ceci, Andrea
;
Dal Bosco, Chiara;Gentili, Alessandra;Persiani, Anna Maria
2021

Abstract

Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose–response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study re-ports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation.
2021
AMPA; biodegradation; bioremediation; glyphosate; glyphosate biodegradation pathway; Purpureocillium lilacinum; roundup; saprotrophic fungi; sarcosine; tolerance index
01 Pubblicazione su rivista::01a Articolo in rivista
Glyphosate-eating fungi. Study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it / Spinelli, Veronica; Ceci, Andrea; Dal Bosco, Chiara; Gentili, Alessandra; Persiani, Anna Maria. - In: MICROORGANISMS. - ISSN 2076-2607. - 9:11(2021). [10.3390/microorganisms9112179]
File allegati a questo prodotto
File Dimensione Formato  
Spinelli_Glyphosate-eating-fungi_2021.pdf

accesso aperto

Note: https://www.mdpi.com/2076-2607/9/11/2179
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1590995
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact