Life cycle assessment (LCA) is a fundamental tool for evaluating the environmental and energy load of a production cycle. Its application to renewable energy production systems offers the possibility of identifying the environmental benefits of such processes—especially those related to the by-products of production processes (i.e., digestion or biochar). Biochar has received worldwide interest because of its potential uses in bioenergy production, due to its coproducts (bio-oil and syngas), as well as in global warming mitigation, sustainable agriculture, pollutant removal, and other uses. Biochar production and use of soil is a strategy for carbon sequestration that could contribute to the reduction of emissions, providing simultaneous benefits to soil and opportunities for bioenergy generation. However, to confirm all of biochar’s benefits, it is necessary to characterize the environmental and energy loads of the production cycle. In this work, soil carbon sequestration, nitrous oxide emissions, use of fertilizers, and use of water for irrigation have been considered in the biochar’s LCA, where the latter is used as a soil conditioner. Primary data taken from experiments and prior studies, as well as open-source available databases, were combined to evaluate the environmental impacts of energy production from biomass, as well as the biochar life cycle, including pre-and post-conversion processes. From the found results, it can be deduced that the use of gasification production of energy and biochar is an attractive strategy for mitigating the environmental impacts analyzed here—especially climate change, with a net decrease of about −8.3 × 103 kg CO2 eq. Finally, this study highlighted strategic research developments that combine the specific characteristics of biochar and soil that need to be amended.

A life cycle assessment of an energy-biochar chain involving a gasification plant in Italy / Marzeddu, S.; Cappelli, A.; Ambrosio, A.; Decima, M. A.; Viotti, P.; Boni, M. R.. - In: LAND. - ISSN 2073-445X. - 10:11(2021). [10.3390/land10111256]

A life cycle assessment of an energy-biochar chain involving a gasification plant in Italy

Marzeddu S.
Primo
Membro del Collaboration Group
;
Cappelli A.
Secondo
Membro del Collaboration Group
;
Decima M. A.
Membro del Collaboration Group
;
Viotti P.
Penultimo
Membro del Collaboration Group
;
Boni M. R.
Ultimo
Membro del Collaboration Group
2021

Abstract

Life cycle assessment (LCA) is a fundamental tool for evaluating the environmental and energy load of a production cycle. Its application to renewable energy production systems offers the possibility of identifying the environmental benefits of such processes—especially those related to the by-products of production processes (i.e., digestion or biochar). Biochar has received worldwide interest because of its potential uses in bioenergy production, due to its coproducts (bio-oil and syngas), as well as in global warming mitigation, sustainable agriculture, pollutant removal, and other uses. Biochar production and use of soil is a strategy for carbon sequestration that could contribute to the reduction of emissions, providing simultaneous benefits to soil and opportunities for bioenergy generation. However, to confirm all of biochar’s benefits, it is necessary to characterize the environmental and energy loads of the production cycle. In this work, soil carbon sequestration, nitrous oxide emissions, use of fertilizers, and use of water for irrigation have been considered in the biochar’s LCA, where the latter is used as a soil conditioner. Primary data taken from experiments and prior studies, as well as open-source available databases, were combined to evaluate the environmental impacts of energy production from biomass, as well as the biochar life cycle, including pre-and post-conversion processes. From the found results, it can be deduced that the use of gasification production of energy and biochar is an attractive strategy for mitigating the environmental impacts analyzed here—especially climate change, with a net decrease of about −8.3 × 103 kg CO2 eq. Finally, this study highlighted strategic research developments that combine the specific characteristics of biochar and soil that need to be amended.
2021
agricultural land detection; biochar; environmental impacts; gasification; GWP; land-climate interaction; LCA; natural resources management; OpenLCA; pyrolisis
01 Pubblicazione su rivista::01a Articolo in rivista
A life cycle assessment of an energy-biochar chain involving a gasification plant in Italy / Marzeddu, S.; Cappelli, A.; Ambrosio, A.; Decima, M. A.; Viotti, P.; Boni, M. R.. - In: LAND. - ISSN 2073-445X. - 10:11(2021). [10.3390/land10111256]
File allegati a questo prodotto
File Dimensione Formato  
Marzeddu_life-cycle-assessment_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 6.07 MB
Formato Adobe PDF
6.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1588599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact