An efficient yet accurate procedure has been developed for the seismic assessment of reinforced concrete bridges subject to chloride-induced corrosion. Specifically, the procedure involves using an incremental modal pushover analysis to assess corroded bridges as an alternative and less computationally demanding approach to non-linear dynamic analysis. A multi-physics finite-element analysis is performed to evaluate the effects of chloride-induced corrosion on bridge columns. In doing so, chloride ingress in concrete is numerically simulated as a discussion process by considering the effects of temperature, humidity, corrosion-induced cover cracking and concrete aging. The estimated chloride concentration is then employed to evaluate the corrosion current density, from which the effects of corrosion on reinforcement, cracked cover concrete, confinement and plastic hinge length can be determined for subsequent non-linear static analysis. A case study of a typical bridge structures is presented. The proposed procedure can be used to assess the seismic performance of irregular reinforced concrete bridges exposed to severe corrosive environments.
Seismic assessment of corroded concrete bridges using incremental modal pushover analysis / Vittorio Bergami, Alessandro; Pelle, Angelo; Fiorentino, Gabriele; Lavorato, Davide; Felice Giaccu, Gian; Quaranta, Giuseppe; Briseghella, Bruno; Nuti, Camillo. - In: PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS. BRIDGE ENGINEERING. - ISSN 1478-4637. - (2021). [10.1680/jbren.21.00025]
Seismic assessment of corroded concrete bridges using incremental modal pushover analysis
Alessandro Vittorio Bergami;Giuseppe Quaranta;
2021
Abstract
An efficient yet accurate procedure has been developed for the seismic assessment of reinforced concrete bridges subject to chloride-induced corrosion. Specifically, the procedure involves using an incremental modal pushover analysis to assess corroded bridges as an alternative and less computationally demanding approach to non-linear dynamic analysis. A multi-physics finite-element analysis is performed to evaluate the effects of chloride-induced corrosion on bridge columns. In doing so, chloride ingress in concrete is numerically simulated as a discussion process by considering the effects of temperature, humidity, corrosion-induced cover cracking and concrete aging. The estimated chloride concentration is then employed to evaluate the corrosion current density, from which the effects of corrosion on reinforcement, cracked cover concrete, confinement and plastic hinge length can be determined for subsequent non-linear static analysis. A case study of a typical bridge structures is presented. The proposed procedure can be used to assess the seismic performance of irregular reinforced concrete bridges exposed to severe corrosive environments.File | Dimensione | Formato | |
---|---|---|---|
Bergami_post-print_Seismic_2021.pdf
Open Access dal 01/01/2023
Note: Proof of the accepted manuscript
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
833.19 kB
Formato
Adobe PDF
|
833.19 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.