We consider a multi-layer Sherrington-Kirkpatrick spin-glass as a model for deep restricted Boltzmann machines with quenched random weights and solve for its free energy in the thermodynamic limit by means of Guerra's interpolating techniques under the RS and 1RSB ansatz. In particular, we recover the expression already known for the replica-symmetric case. Further, we drop the restriction constraint by introducing intra-layer connections among spins and we show that the resulting system can be mapped into a modular Hopfield network, which is also addressed via the same techniques up to the first step of replica symmetry breaking.
A transport equation approach for deep neural networks with quenched random weights / Agliari, Elena; Albanese, Linda; Alemanno, Francesco; Fachechi, Alberto. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - (2021). [10.1088/1751-8121/ac38ec]
A transport equation approach for deep neural networks with quenched random weights
Agliari, Elena
;Fachechi, Alberto
2021
Abstract
We consider a multi-layer Sherrington-Kirkpatrick spin-glass as a model for deep restricted Boltzmann machines with quenched random weights and solve for its free energy in the thermodynamic limit by means of Guerra's interpolating techniques under the RS and 1RSB ansatz. In particular, we recover the expression already known for the replica-symmetric case. Further, we drop the restriction constraint by introducing intra-layer connections among spins and we show that the resulting system can be mapped into a modular Hopfield network, which is also addressed via the same techniques up to the first step of replica symmetry breaking.File | Dimensione | Formato | |
---|---|---|---|
Agliari_A-transport-equation_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.