Individuals with Highly Superior Autobiographical Memory (HSAMs) provide the opportunity to investigate the neurobiological substrates of enhanced memory performance. While previous studies started to assess the neural correlates of memory retrieval in HSAM, here we assessed for the first time the intrinsic connectivity of a core memory region, the hippocampus, with the whole brain in 8 HSAMs and 21 controls during resting-state functional neuroimaging. We found in HSAMs vs. controls disrupted hippocampal resting-state functional connectivity (rsFC) with high-level control regions belonging to the saliency network (the anterior cingulate cortex and the left and right insulae), and to the ventral fronto-parietal attentional network (the temporo-parietal junction and the inferior frontal gyrus), also involved with salience detection. Conversely, HSAMs showed enhanced hippocampal rsFC with sensory regions along the fusiform gyrus and the inferior temporal cortex. This altered pattern of hippocampal rsFC might be interpreted as a reduced capability of HSAMs to discriminate and select salient information, with a subsequent increase in the probability to encode and consolidate sensory information irrespective of their task-relevancy. Ultimately, these findings provided evidence that HSAM might be paradoxically enabled by an altered hippocampal rsFC that bypasses regions involved with salience detection in favor of specialized sensory regions.

Altered hippocampal resting-state functional connectivity in highly superior autobiographical memory / Daviddi, Sarah; Pedale, Tiziana; Serra, Laura; Macrì, Simone; Campolongo, Patrizia; Santangelo, Valerio. - In: NEUROSCIENCE. - ISSN 0306-4522. - (2021). [10.1016/j.neuroscience.2021.11.004]

Altered hippocampal resting-state functional connectivity in highly superior autobiographical memory

Campolongo, Patrizia;
2021

Abstract

Individuals with Highly Superior Autobiographical Memory (HSAMs) provide the opportunity to investigate the neurobiological substrates of enhanced memory performance. While previous studies started to assess the neural correlates of memory retrieval in HSAM, here we assessed for the first time the intrinsic connectivity of a core memory region, the hippocampus, with the whole brain in 8 HSAMs and 21 controls during resting-state functional neuroimaging. We found in HSAMs vs. controls disrupted hippocampal resting-state functional connectivity (rsFC) with high-level control regions belonging to the saliency network (the anterior cingulate cortex and the left and right insulae), and to the ventral fronto-parietal attentional network (the temporo-parietal junction and the inferior frontal gyrus), also involved with salience detection. Conversely, HSAMs showed enhanced hippocampal rsFC with sensory regions along the fusiform gyrus and the inferior temporal cortex. This altered pattern of hippocampal rsFC might be interpreted as a reduced capability of HSAMs to discriminate and select salient information, with a subsequent increase in the probability to encode and consolidate sensory information irrespective of their task-relevancy. Ultimately, these findings provided evidence that HSAM might be paradoxically enabled by an altered hippocampal rsFC that bypasses regions involved with salience detection in favor of specialized sensory regions.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1585627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact