This paper deals with the ruin probability evaluation in a classical risk theory model, under different hypotheses about claims distribution. Our approach is totally innovative, and is based on the application of the Mean-Value Theorem to solve the associated Volterra integral equation. The numerical experiments show that the procedure we are proposing works well in all circumstances, compared to other pre-existing methodologies.

Evaluating Ruin Probabilities: A Streamlined Approach / DE ANGELIS, Paolo; DE MARCHIS, Roberto; Marino, Mario; Martire, ANTONIO LUCIANO; Oliva, Immacolata. - In: APPLIED MATHEMATICS E-NOTES. - ISSN 1607-2510. - 21(2021), pp. 634-642.

Evaluating Ruin Probabilities: A Streamlined Approach

Paolo De Angelis;Roberto De Marchis;Mario Marino;Antonio Luciano Martire;Immacolata Oliva
2021

Abstract

This paper deals with the ruin probability evaluation in a classical risk theory model, under different hypotheses about claims distribution. Our approach is totally innovative, and is based on the application of the Mean-Value Theorem to solve the associated Volterra integral equation. The numerical experiments show that the procedure we are proposing works well in all circumstances, compared to other pre-existing methodologies.
2021
Ruin probability; Mean-Value Theorem; Exponential distribution; Weibull distribution; Pareto distribution; Gamma distribution
01 Pubblicazione su rivista::01a Articolo in rivista
Evaluating Ruin Probabilities: A Streamlined Approach / DE ANGELIS, Paolo; DE MARCHIS, Roberto; Marino, Mario; Martire, ANTONIO LUCIANO; Oliva, Immacolata. - In: APPLIED MATHEMATICS E-NOTES. - ISSN 1607-2510. - 21(2021), pp. 634-642.
File allegati a questo prodotto
File Dimensione Formato  
Oliva_Evaluating-ruin-probabilities_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1585532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact