We demonstrate the use of plasmonic effects to boost the near-infrared sensitivity of metal-semiconductor-metal detectors. Plasmon-enhanced photodetection is achieved by properly optimizing Au interdigitated electrodes, micro-fabricated on Ge, a semiconductor that features a strong near IR absorption. Finite-difference time-domain simulations, photocurrent experiments and Fourier-transform IR spectroscopy are performed to validate how a relatively simple tuning of the contact geometry allows for an enhancement of the response of the device adapting it to the specific detection needs. A 2-fold gain factor in the Ge absorption characteristics is experimentally demonstrated at 1.4 µm, highlighting the potential of this approach for optoelectronic and sensing applications.
Plasmon-enhanced Ge-based metal-semiconductor-metal photodetector at near-IR wavelengths / Lodari, M.; Biagioni, P.; Ortolani, M.; Baldassarre, L.; Isella, G.; Bollani, M.. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 27:15(2019), pp. 20516-20524. [10.1364/OE.27.020516]
Plasmon-enhanced Ge-based metal-semiconductor-metal photodetector at near-IR wavelengths
Ortolani M.;Baldassarre L.;
2019
Abstract
We demonstrate the use of plasmonic effects to boost the near-infrared sensitivity of metal-semiconductor-metal detectors. Plasmon-enhanced photodetection is achieved by properly optimizing Au interdigitated electrodes, micro-fabricated on Ge, a semiconductor that features a strong near IR absorption. Finite-difference time-domain simulations, photocurrent experiments and Fourier-transform IR spectroscopy are performed to validate how a relatively simple tuning of the contact geometry allows for an enhancement of the response of the device adapting it to the specific detection needs. A 2-fold gain factor in the Ge absorption characteristics is experimentally demonstrated at 1.4 µm, highlighting the potential of this approach for optoelectronic and sensing applications.File | Dimensione | Formato | |
---|---|---|---|
Lodari_Plasmon-enhanced_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.