Given a graph G=(V,E),HCN(L(G)) is the minimum number of edges to be added to its line graph L(G) to make L(G) Hamiltonian. This problem is known to be NP-hard for general graphs, whereas a O(|V|) algorithm exists when G is a tree. In this paper a linear algorithm for finding HCN(L(G)) when G is a cactus is proposed.

A linear algorithm for the Hamiltonian completion number of the line graph of a cactus / Detti, P.; Meloni, C. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 136:2-3(2004), pp. 197-215. [10.1016/S0166-218X(03)00441-4]

A linear algorithm for the Hamiltonian completion number of the line graph of a cactus

Meloni, C
2004

Abstract

Given a graph G=(V,E),HCN(L(G)) is the minimum number of edges to be added to its line graph L(G) to make L(G) Hamiltonian. This problem is known to be NP-hard for general graphs, whereas a O(|V|) algorithm exists when G is a tree. In this paper a linear algorithm for finding HCN(L(G)) when G is a cactus is proposed.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1583461
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact