In this work we apply a novel, accurate, fast, and robust physics-informed neural network framework for data-driven parameters discovery of problems modeled via parametric ordinary differential equations (ODEs) called the Extreme Theory of Functional Connections (X-TFC). The proposed method merges two recently developed frameworks for solving problems involving parametric DEs, 1) the Theory of Functional Connections (TFC) and 2) the Physics-Informed Neural Networks (PINN). In particular, this work focuses on the capability of X-TFC in solving inverse problems to estimate the parameters governing the epidemiological compartmental models via a deterministic approach. The epidemiological compartmental models treated in this work are Susceptible-Infectious-Recovered (SIR), Susceptible-Exposed-Infectious-Recovered (SEIR), and Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIR). The results show the low computational times, the high accuracy and effectiveness of the X-TFC method in performing data-driven parameters discovery of systems modeled via parametric ODEs using unperturbed and perturbed data.

Physics-informed extreme theory of functional connections applied to data-driven parameters discovery of Epidemiological Compartmental Models / Schiassi, Enrico; D'Ambrosio, Andrea; De Florio, Mario; Furfaro, Roberto; Curti, Fabio. - (2020).

Physics-informed extreme theory of functional connections applied to data-driven parameters discovery of Epidemiological Compartmental Models

Andrea D'Ambrosio;Fabio Curti
2020

Abstract

In this work we apply a novel, accurate, fast, and robust physics-informed neural network framework for data-driven parameters discovery of problems modeled via parametric ordinary differential equations (ODEs) called the Extreme Theory of Functional Connections (X-TFC). The proposed method merges two recently developed frameworks for solving problems involving parametric DEs, 1) the Theory of Functional Connections (TFC) and 2) the Physics-Informed Neural Networks (PINN). In particular, this work focuses on the capability of X-TFC in solving inverse problems to estimate the parameters governing the epidemiological compartmental models via a deterministic approach. The epidemiological compartmental models treated in this work are Susceptible-Infectious-Recovered (SIR), Susceptible-Exposed-Infectious-Recovered (SEIR), and Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIR). The results show the low computational times, the high accuracy and effectiveness of the X-TFC method in performing data-driven parameters discovery of systems modeled via parametric ODEs using unperturbed and perturbed data.
2020
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1577523
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact