We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the $p$-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.

Some remarks on the Sobolev inequality in Riemannian manifolds / Andreucci, Daniele; Tedeev, Anatoli. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2021). [10.1090/proc/15774]

Some remarks on the Sobolev inequality in Riemannian manifolds

Andreucci, Daniele
;
Tedeev, Anatoli
2021

Abstract

We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe's type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the $p$-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.
2021
Sobolev and Hardy inequality; Riemannian manifold; isoperimetric profile
01 Pubblicazione su rivista::01a Articolo in rivista
Some remarks on the Sobolev inequality in Riemannian manifolds / Andreucci, Daniele; Tedeev, Anatoli. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6826. - (2021). [10.1090/proc/15774]
File allegati a questo prodotto
File Dimensione Formato  
Andreucci_some remarks_2021.pdf

solo gestori archivio

Note: https://www.ams.org/cgi-bin/mstrack/accepted_papers/proc
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 181.86 kB
Formato Adobe PDF
181.86 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1576403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact