We study best-effort synthesis under environment assumptions specified in LTL, and show that this problem has exactly the same computational complexity of standard LTL synthesis: 2EXPTIME-complete. We provide optimal algorithms for computing best-effort strategies, both in the case of LTL over infinite traces and LTL over finite traces (i.e., LTLf). The latter are particularly well suited for implementation.

Best-Effort Synthesis: Doing Your Best Is Not Harder Than Giving Up / Aminof, Benjamin; DE GIACOMO, Giuseppe; Rubin, Sasha. - In: IJCAI. - ISSN 1045-0823. - (2021), pp. 1766-1772. (Intervento presentato al convegno Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021 tenutosi a Montreal, Canada) [10.24963/ijcai.2021/243].

Best-Effort Synthesis: Doing Your Best Is Not Harder Than Giving Up

Giuseppe De Giacomo
;
2021

Abstract

We study best-effort synthesis under environment assumptions specified in LTL, and show that this problem has exactly the same computational complexity of standard LTL synthesis: 2EXPTIME-complete. We provide optimal algorithms for computing best-effort strategies, both in the case of LTL over infinite traces and LTL over finite traces (i.e., LTLf). The latter are particularly well suited for implementation.
2021
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021
Automated Program Synthesis; LTL Synthesis; Linear Temporal Logic
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Best-Effort Synthesis: Doing Your Best Is Not Harder Than Giving Up / Aminof, Benjamin; DE GIACOMO, Giuseppe; Rubin, Sasha. - In: IJCAI. - ISSN 1045-0823. - (2021), pp. 1766-1772. (Intervento presentato al convegno Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021 tenutosi a Montreal, Canada) [10.24963/ijcai.2021/243].
File allegati a questo prodotto
File Dimensione Formato  
Aminof_Best-Effort Synthesis_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 160.31 kB
Formato Adobe PDF
160.31 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1575268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact