The paper discusses new cubature formulas for the Riesz potential and the fractional Laplacian ((-Delta)^{a/2}), (0<2), in the framework of the method approximate approximations. This approach, combined with separated representations, makes the method successful also in high dimensions. We prove error estimates and report on numerical results illustrating that our formulas are accurate and provide the predicted convergence rate (2,4,6,8) up to dimension 10^4.

Fast computation of the multidimensional fractional Laplacian / Lanzara, Flavia; Maz'Ya, Vladimir; Schmidt, Gunther. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - 101:11(2022), pp. 4025-4041. [10.1080/00036811.2021.1986025]

Fast computation of the multidimensional fractional Laplacian

Flavia Lanzara
;
2022

Abstract

The paper discusses new cubature formulas for the Riesz potential and the fractional Laplacian ((-Delta)^{a/2}), (0<2), in the framework of the method approximate approximations. This approach, combined with separated representations, makes the method successful also in high dimensions. We prove error estimates and report on numerical results illustrating that our formulas are accurate and provide the predicted convergence rate (2,4,6,8) up to dimension 10^4.
2022
Multidimensional convolution; Riesz potential; fractional laplacian; separated representation; approximate approximations
01 Pubblicazione su rivista::01a Articolo in rivista
Fast computation of the multidimensional fractional Laplacian / Lanzara, Flavia; Maz'Ya, Vladimir; Schmidt, Gunther. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - 101:11(2022), pp. 4025-4041. [10.1080/00036811.2021.1986025]
File allegati a questo prodotto
File Dimensione Formato  
Lanzara_postprint_Fast-computation_2021.pdf

Open Access dal 06/10/2022

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 358.29 kB
Formato Adobe PDF
358.29 kB Adobe PDF
Lanzara_Fast-computation_2021.pdf.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1574789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact