Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.

Machine learning aided prediction of rain erosion damage on wind turbine blade sections / Castorrini, A.; Venturini, P.; Gerboni, F.; Corsini, A.; Rispoli, F.. - 1:(2021). (Intervento presentato al convegno ASME Turbo Expo 2021: turbomachinery technical conference and exposition, GT 2021 tenutosi a Conferenza virtuale) [10.1115/GT2021-59156].

Machine learning aided prediction of rain erosion damage on wind turbine blade sections

Castorrini A.;Venturini P.
;
Corsini A.;Rispoli F.
2021

Abstract

Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.
2021
ASME Turbo Expo 2021: turbomachinery technical conference and exposition, GT 2021
erosion; forecasting; machine learning; turbine components; turbomachine blades; wind power; wind turbines
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Machine learning aided prediction of rain erosion damage on wind turbine blade sections / Castorrini, A.; Venturini, P.; Gerboni, F.; Corsini, A.; Rispoli, F.. - 1:(2021). (Intervento presentato al convegno ASME Turbo Expo 2021: turbomachinery technical conference and exposition, GT 2021 tenutosi a Conferenza virtuale) [10.1115/GT2021-59156].
File allegati a questo prodotto
File Dimensione Formato  
Venturini_Machine-learning_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1574779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact