We prove extinction in a finite time for a singular parabolic equation on a Riemannian manifold, under suitable assumptions on the Riemannian metric and on the inhomogeneous coefficient appearing in the equation. The result relies on a suitable embedding theorem, of which we present a new proof.
Extinction in a finite time for parabolic equations of fast diffusion type on manifolds / Andreucci, D.; Tedeev, A. F.. - (2021), pp. 1-6. - TRENDS IN MATHEMATICS. [10.1007/978-3-030-49763-7_1].
Extinction in a finite time for parabolic equations of fast diffusion type on manifolds
Andreucci, D.;
2021
Abstract
We prove extinction in a finite time for a singular parabolic equation on a Riemannian manifold, under suitable assumptions on the Riemannian metric and on the inhomogeneous coefficient appearing in the equation. The result relies on a suitable embedding theorem, of which we present a new proof.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Andreucci_Extinction_2021.pdf
Open Access dal 02/01/2022
Note: https://link.springer.com/chapter/10.1007/978-3-030-49763-7_1
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
95.88 kB
Formato
Adobe PDF
|
95.88 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.