Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.

Identification of GOLPH3 partners in Drosophila unveils potential novel roles in tumorigenesis and neural disorders / Sechi, Stefano; Karimpour-Ghahnavieh, Angela; Frappaolo, Anna; Di Francesco, Laura; Piergentili, Roberto; Schininà, Eugenia; D'Avino, Pier Paolo; Giansanti, Maria Grazia. - In: CELLS. - ISSN 2073-4409. - 10:9(2021). [10.3390/cells10092336]

Identification of GOLPH3 partners in Drosophila unveils potential novel roles in tumorigenesis and neural disorders

Karimpour-Ghahnavieh, Angela;Frappaolo, Anna;Di Francesco, Laura;Piergentili, Roberto;Schininà, Eugenia;Giansanti, Maria Grazia
2021

Abstract

Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
2021
Drosophila; FMRP; GOLPH3; Golgi; cell cycle; male meiosis; spermatogenesis
01 Pubblicazione su rivista::01a Articolo in rivista
Identification of GOLPH3 partners in Drosophila unveils potential novel roles in tumorigenesis and neural disorders / Sechi, Stefano; Karimpour-Ghahnavieh, Angela; Frappaolo, Anna; Di Francesco, Laura; Piergentili, Roberto; Schininà, Eugenia; D'Avino, Pier Paolo; Giansanti, Maria Grazia. - In: CELLS. - ISSN 2073-4409. - 10:9(2021). [10.3390/cells10092336]
File allegati a questo prodotto
File Dimensione Formato  
Sechi_Identification_2021.pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.28 MB
Formato Adobe PDF
4.28 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1573796
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact