We study Radon measure-valued solutions of the Cauchy-Dirichlet problem for $pa_t u = Delta phi (u)$ for a continuous, nondecreasing, at most powerlike $phi$. We prove well-posedness and regularity results, which depend on whether or not the initial data charge sets of suitable capacity (determined both by the Laplacian and by the growth order of $phi$), and on suitable {em compatibility conditions}.
Noncoercive diffusion equations with Radon measures as initial data / Porzio, Maria Michaela; Smarrazzo, Flavia; Tesei, Alberto. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - (2022).
Noncoercive diffusion equations with Radon measures as initial data
Maria Michaela Porzio;Alberto Tesei
2022
Abstract
We study Radon measure-valued solutions of the Cauchy-Dirichlet problem for $pa_t u = Delta phi (u)$ for a continuous, nondecreasing, at most powerlike $phi$. We prove well-posedness and regularity results, which depend on whether or not the initial data charge sets of suitable capacity (determined both by the Laplacian and by the growth order of $phi$), and on suitable {em compatibility conditions}.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Porzio_Noncoercive_2021.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
640.79 kB
Formato
Adobe PDF
|
640.79 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.