In this paper we study the regularity and the behavior in time of the solutions to a quasilinear class of noncoercive problems whose prototype is {ut-div(a(x,t,u)∇u)=-div(uE(x,t))inΩ×(0,T),u(x,t)=0on∂Ω×(0,T),u(x,0)=u0(x)inΩ. In particular we show that under suitable conditions on the vector field E, even if the problem is noncoercive and although the initial datum u is only an L1(Ω) function, there exist solutions that immediately improve their regularity and belong to every Lebesgue space. We also prove that solutions may become immediately bounded. Finally, we study the behavior in time of such regular solutions and we prove estimates that allow to describe their blow-up for t near zero.

Regularity results and asymptotic behavior for a noncoercive parabolic problem / Boccardo, L.; Orsina, L.; Porzio, M. M.. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 21:2(2021), pp. 2195-2211. [10.1007/s00028-021-00678-2]

Regularity results and asymptotic behavior for a noncoercive parabolic problem

Boccardo L.;Orsina L.;Porzio M. M.
2021

Abstract

In this paper we study the regularity and the behavior in time of the solutions to a quasilinear class of noncoercive problems whose prototype is {ut-div(a(x,t,u)∇u)=-div(uE(x,t))inΩ×(0,T),u(x,t)=0on∂Ω×(0,T),u(x,0)=u0(x)inΩ. In particular we show that under suitable conditions on the vector field E, even if the problem is noncoercive and although the initial datum u is only an L1(Ω) function, there exist solutions that immediately improve their regularity and belong to every Lebesgue space. We also prove that solutions may become immediately bounded. Finally, we study the behavior in time of such regular solutions and we prove estimates that allow to describe their blow-up for t near zero.
2021
asymptotic behavior; linear and quasilinear parabolic equations; noncoercive problems; regularity of solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Regularity results and asymptotic behavior for a noncoercive parabolic problem / Boccardo, L.; Orsina, L.; Porzio, M. M.. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 21:2(2021), pp. 2195-2211. [10.1007/s00028-021-00678-2]
File allegati a questo prodotto
File Dimensione Formato  
Boccardo_Regularity_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 361.2 kB
Formato Adobe PDF
361.2 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1573656
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact