Due to the huge increase in the number and dimension of available databases, efficient solutions for counting frequent sets are nowadays very important within the Data Mining community. Several sequential and parallel algorithms were proposed, which in many cases exhibit excellent scalability. In this paper we present ParDCI, a distributed and multithreaded algorithm for counting the occurrences of frequent sets within transactional databases. ParDCI is a parallel version of DCI (Direct Count & Intersect), a multi-strategy algorithm which is able to adapt its behavior not only to the features of the specific computing platform (e.g. available memory), but also to the features of the dataset being processed (e.g. sparse or dense datasets). ParDCI enhances previous proposals by exploiting the highly optimized counting and intersection techniques of DCI, and by relying on a multi-level parallelization approach which explicitly targets clusters of SMPs, an emerging computing platform. We focused our work on the efficient exploitation of the underlying architecture. Intra-Node multithreading effectively exploits the memory hierarchies of each SMP node, while Inter-Node parallelism exploits smart partitioning techniques aimed at reducing communication overheads. In depth experimental evaluations demonstrate that ParDCI reaches nearly optimal performances under a variety of conditions. © Springer-Verlag Berlin Heidelberg 2003.

An efficient parallel and distributed algorithm for counting frequent sets / Orlando, S.; Palmerini, P.; Perego, R.; Silvestri, F.. - 2565:(2003), pp. 421-435. (Intervento presentato al convegno VECPAR 2002 tenutosi a Porto) [10.1007/3-540-36569-9_28].

An efficient parallel and distributed algorithm for counting frequent sets

Orlando S.;Silvestri F.
2003

Abstract

Due to the huge increase in the number and dimension of available databases, efficient solutions for counting frequent sets are nowadays very important within the Data Mining community. Several sequential and parallel algorithms were proposed, which in many cases exhibit excellent scalability. In this paper we present ParDCI, a distributed and multithreaded algorithm for counting the occurrences of frequent sets within transactional databases. ParDCI is a parallel version of DCI (Direct Count & Intersect), a multi-strategy algorithm which is able to adapt its behavior not only to the features of the specific computing platform (e.g. available memory), but also to the features of the dataset being processed (e.g. sparse or dense datasets). ParDCI enhances previous proposals by exploiting the highly optimized counting and intersection techniques of DCI, and by relying on a multi-level parallelization approach which explicitly targets clusters of SMPs, an emerging computing platform. We focused our work on the efficient exploitation of the underlying architecture. Intra-Node multithreading effectively exploits the memory hierarchies of each SMP node, while Inter-Node parallelism exploits smart partitioning techniques aimed at reducing communication overheads. In depth experimental evaluations demonstrate that ParDCI reaches nearly optimal performances under a variety of conditions. © Springer-Verlag Berlin Heidelberg 2003.
2003
VECPAR 2002
Data Mining
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
An efficient parallel and distributed algorithm for counting frequent sets / Orlando, S.; Palmerini, P.; Perego, R.; Silvestri, F.. - 2565:(2003), pp. 421-435. (Intervento presentato al convegno VECPAR 2002 tenutosi a Porto) [10.1007/3-540-36569-9_28].
File allegati a questo prodotto
File Dimensione Formato  
VE_2003_11573-1572776.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 341.34 kB
Formato Adobe PDF
341.34 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1572776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 0
social impact