The topology of the moduli space for Lamé functions of degree m is determined: this is a Riemann surface which consists of two connected components when m ≥ 2; we find the Euler characteristics and genera of these components. As a corollary we prove a conjecture of Maier on degrees of Cohn's polynomials. These results are obtained with the help of a geometric description of these Riemann surfaces, as quotients of the moduli spaces for certain singular flat triangles. An application is given to the study of metrics of constant positive curvature with one conic singularity with the angle 2π(2m + 1) on a torus. We show that the degeneration locus of such metrics is a union of smooth analytic curves and we enumerate these curves.

Moduli spaces for Lamé functions and Abelian differentials of the second kind / Eremenko, A.; Gabrielov, A.; Mondello, G.; Panov, D.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 24:2(2022). [10.1142/S0219199721500280]

Moduli spaces for Lamé functions and Abelian differentials of the second kind

Mondello G.
Membro del Collaboration Group
;
Panov D.
Membro del Collaboration Group
2022

Abstract

The topology of the moduli space for Lamé functions of degree m is determined: this is a Riemann surface which consists of two connected components when m ≥ 2; we find the Euler characteristics and genera of these components. As a corollary we prove a conjecture of Maier on degrees of Cohn's polynomials. These results are obtained with the help of a geometric description of these Riemann surfaces, as quotients of the moduli spaces for certain singular flat triangles. An application is given to the study of metrics of constant positive curvature with one conic singularity with the angle 2π(2m + 1) on a torus. We show that the degeneration locus of such metrics is a union of smooth analytic curves and we enumerate these curves.
2022
Abelian differential; conic singularity; elliptic curve; flat metric; Lamé equation; Plane algebraic curve; spherical metric; translation surface
01 Pubblicazione su rivista::01a Articolo in rivista
Moduli spaces for Lamé functions and Abelian differentials of the second kind / Eremenko, A.; Gabrielov, A.; Mondello, G.; Panov, D.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 24:2(2022). [10.1142/S0219199721500280]
File allegati a questo prodotto
File Dimensione Formato  
Eremenko_preprint_Moduli-spaces_2021.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 6.45 MB
Formato Adobe PDF
6.45 MB Adobe PDF
Eremenko_Moduli-spaces_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1572698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact