In this paper we show the uniqueness of the critical point for semi-stable solutions of the problem {-Δu=f(u)inΩu>0inΩu=0on∂Ω,where Ω ⊂ R2 is a smooth bounded domain whose boundary has nonnegative curvature and f(0) ≥ 0. It extends a result by Cabré-Chanillo to the case where the curvature of ∂Ω vanishes.

Uniqueness of the critical point for semi-stable solutions in R2 / De Regibus, F.; Grossi, M.; Mukherjee, D.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 60:1(2021). [10.1007/s00526-020-01903-5]

Uniqueness of the critical point for semi-stable solutions in R2

De Regibus F.;Grossi M.
;
2021

Abstract

In this paper we show the uniqueness of the critical point for semi-stable solutions of the problem {-Δu=f(u)inΩu>0inΩu=0on∂Ω,where Ω ⊂ R2 is a smooth bounded domain whose boundary has nonnegative curvature and f(0) ≥ 0. It extends a result by Cabré-Chanillo to the case where the curvature of ∂Ω vanishes.
2021
Degree theory; maximum principle; convexity
01 Pubblicazione su rivista::01a Articolo in rivista
Uniqueness of the critical point for semi-stable solutions in R2 / De Regibus, F.; Grossi, M.; Mukherjee, D.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 60:1(2021). [10.1007/s00526-020-01903-5]
File allegati a questo prodotto
File Dimensione Formato  
DeRegibus_Uniqueness_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 323.5 kB
Formato Adobe PDF
323.5 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1572626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact