COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.

Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection / Ciccosanti, F.; Di Rienzo, M.; Romagnoli, A.; Colavita, F.; Refolo, G.; Castilletti, C.; Agrati, C.; Brai, A.; Manetti, F.; Botta, L.; Capobianchi, M. R.; Ippolito, G.; Piacentini, M.; Fimia, G. M.. - In: ANTIVIRAL RESEARCH. - ISSN 0166-3542. - 190:(2021). [10.1016/j.antiviral.2021.105064]

Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection

Fimia G. M.
2021

Abstract

COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.
2021
antiviral drugs; COVID-19; DEAD RNA helicase; G3BP1; proteomics; stress granules
01 Pubblicazione su rivista::01a Articolo in rivista
Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection / Ciccosanti, F.; Di Rienzo, M.; Romagnoli, A.; Colavita, F.; Refolo, G.; Castilletti, C.; Agrati, C.; Brai, A.; Manetti, F.; Botta, L.; Capobianchi, M. R.; Ippolito, G.; Piacentini, M.; Fimia, G. M.. - In: ANTIVIRAL RESEARCH. - ISSN 0166-3542. - 190:(2021). [10.1016/j.antiviral.2021.105064]
File allegati a questo prodotto
File Dimensione Formato  
Ciccosanti_Proteominc-analysis_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.86 MB
Formato Adobe PDF
5.86 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1572508
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact