We study the time evolution of an incompressible fluid with an axial symmetry without swirl when the vorticity is sharply concentrated on N annuli of radii ≈ r_0 and thickness ε. We prove that when r_0 = ∣log ε∣^α, α > 2, the vorticity field of the fluid converges as ε → 0 to the point-vortex model, at least for a small but positive time. This result generalizes a previous paper that assumed a power law for the relation between r_0 and ε.
Time evolution of vortex rings with large radius and very concentrated vorticity / Cavallaro, Guido; Marchioro, Carlo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 62:(2021). [10.1063/5.0022358]
Time evolution of vortex rings with large radius and very concentrated vorticity
Guido Cavallaro
;Carlo Marchioro
2021
Abstract
We study the time evolution of an incompressible fluid with an axial symmetry without swirl when the vorticity is sharply concentrated on N annuli of radii ≈ r_0 and thickness ε. We prove that when r_0 = ∣log ε∣^α, α > 2, the vorticity field of the fluid converges as ε → 0 to the point-vortex model, at least for a small but positive time. This result generalizes a previous paper that assumed a power law for the relation between r_0 and ε.File | Dimensione | Formato | |
---|---|---|---|
Cavallaro_Time-evolution_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF | Contatta l'autore |
Cavallaro_preprint_Time-evolution_2021.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
271.45 kB
Formato
Adobe PDF
|
271.45 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.