We study an extension of the classical Bin Packing Problem, where each item consumes the bin capacity during a given time window that depends on the item itself. The problem asks for finding the minimum number of bins to pack all the items while respecting the bin capacity at any time instant. A polynomial-size formulation, an exponential-size formulation, and a number of lower and upper bounds are studied. A branch-and-price algorithm for solving the exponential-size formulation is introduced. An overall algorithm combining the different methods is then proposed and tested through extensive computational experiments.
A branch-and-price algorithm for the temporal bin packing problem / Dell'Amico, M.; Furini, F.; Iori, M.. - In: COMPUTERS & OPERATIONS RESEARCH. - ISSN 0305-0548. - 114:(2020). [10.1016/j.cor.2019.104825]
A branch-and-price algorithm for the temporal bin packing problem
Furini F.
;
2020
Abstract
We study an extension of the classical Bin Packing Problem, where each item consumes the bin capacity during a given time window that depends on the item itself. The problem asks for finding the minimum number of bins to pack all the items while respecting the bin capacity at any time instant. A polynomial-size formulation, an exponential-size formulation, and a number of lower and upper bounds are studied. A branch-and-price algorithm for solving the exponential-size formulation is introduced. An overall algorithm combining the different methods is then proposed and tested through extensive computational experiments.File | Dimensione | Formato | |
---|---|---|---|
DellAmico_A-Branch-and-Price_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Contatta l'autore |
DellAmico_preprint_A-Branch-and-Price_2020.pdf
accesso aperto
Note: https://doi.org/10.1016/j.cor.2019.104825
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
310.96 kB
Formato
Adobe PDF
|
310.96 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.