The classic Mallows model is a widely-used tool to realize distributions on permutations. Motivated by common practical situations, in this paper, we generalize Mallows to model distributions on top-k lists by using a suitable distance measure between top-k lists. Unlike many earlier works, our model is both analytically tractable and computationally efficient. We demonstrate this by studying two basic problems in this model, namely, sampling and reconstruction, from both algorithmic and experimental points of view.

Mallows Models for Top-k Lists / Chierichetti, F; Dasgupta, A; Haddadan, S; Kumar, R; Lattanzi, S. - 31:(2018). (Intervento presentato al convegno NeurIPS tenutosi a Montreal; Canada).

Mallows Models for Top-k Lists

Chierichetti, F;Haddadan, S;
2018

Abstract

The classic Mallows model is a widely-used tool to realize distributions on permutations. Motivated by common practical situations, in this paper, we generalize Mallows to model distributions on top-k lists by using a suitable distance measure between top-k lists. Unlike many earlier works, our model is both analytically tractable and computationally efficient. We demonstrate this by studying two basic problems in this model, namely, sampling and reconstruction, from both algorithmic and experimental points of view.
2018
NeurIPS
mallows model; permutations; learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mallows Models for Top-k Lists / Chierichetti, F; Dasgupta, A; Haddadan, S; Kumar, R; Lattanzi, S. - 31:(2018). (Intervento presentato al convegno NeurIPS tenutosi a Montreal; Canada).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1571610
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 0
social impact