The need for fairness in machine learning algorithms is increasingly critical. A recent focus has been on developing fair versions of classical algorithms, such as those for bandit learning, regression, and clustering. We extend this line of work to include algorithms for optimization subject to one or multiple matroid constraints. We map out this problem space, showing optimal solutions, approximation algorithms, or hardness results depending on the specific problem flavor. Our algorithms are efficient and empirical experiments demonstrate that fairness is achievable without a large compromise to the overall objective.

Matroids, Matchings, and Fairness / Chierichetti, F; Kumar, R; Lattanzi, S; Vassilvitskii, S. - 89:(2019). (Intervento presentato al convegno AISTATS tenutosi a Okinawa; Japan).

Matroids, Matchings, and Fairness

Chierichetti, F;
2019

Abstract

The need for fairness in machine learning algorithms is increasingly critical. A recent focus has been on developing fair versions of classical algorithms, such as those for bandit learning, regression, and clustering. We extend this line of work to include algorithms for optimization subject to one or multiple matroid constraints. We map out this problem space, showing optimal solutions, approximation algorithms, or hardness results depending on the specific problem flavor. Our algorithms are efficient and empirical experiments demonstrate that fairness is achievable without a large compromise to the overall objective.
2019
AISTATS
optimization; matroids; fairness
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Matroids, Matchings, and Fairness / Chierichetti, F; Kumar, R; Lattanzi, S; Vassilvitskii, S. - 89:(2019). (Intervento presentato al convegno AISTATS tenutosi a Okinawa; Japan).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1571541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact