We show optimal existence, nonexistence and regularity results for nonnegative solutions to Dirichlet problems with nonlinearities that may blow up at zero also in the first order term. As a noteworthy fact we show how a non-trivial interaction mechanism between the two nonlinearities g and h produces remarkable regularizing effects on the solutions. The sharpness of our main results is discussed through the use of appropriate explicit examples

1-Laplacian type problems with strongly singular nonlinearities and gradient terms / Giachetti, Daniela; Oliva, Francescantonio; Petitta, Francesco. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 24:10(2022). [10.1142/S0219199721500814]

1-Laplacian type problems with strongly singular nonlinearities and gradient terms

Daniela Giachetti;Francescantonio Oliva;Francesco Petitta
2022

Abstract

We show optimal existence, nonexistence and regularity results for nonnegative solutions to Dirichlet problems with nonlinearities that may blow up at zero also in the first order term. As a noteworthy fact we show how a non-trivial interaction mechanism between the two nonlinearities g and h produces remarkable regularizing effects on the solutions. The sharpness of our main results is discussed through the use of appropriate explicit examples
2022
1-Laplacian; nonlinear elliptic equations; singular elliptic equations; gradient terms
01 Pubblicazione su rivista::01a Articolo in rivista
1-Laplacian type problems with strongly singular nonlinearities and gradient terms / Giachetti, Daniela; Oliva, Francescantonio; Petitta, Francesco. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 24:10(2022). [10.1142/S0219199721500814]
File allegati a questo prodotto
File Dimensione Formato  
Giachetti_1-laplacian_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 316.87 kB
Formato Adobe PDF
316.87 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1571517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact