The number of patients with cardiac implantable electronic devices (CIEDs) requiring radiation therapy (RT) for cancer treatment is increasing. The purpose of this study is to estimate the prevalence, possible predictors, and clinical impact of RT-related CIEDs malfunctions. We retrospectively reviewed the medical records of all pacemaker (PM)/implantable cardioverter-defibrillator (ICD) patients who underwent RT in the last 14 years. One hundred and twenty-seven patients who underwent 150 separate RT courses were analysed (99 with a PM and 27 with an ICD). Of note, 21/127 (16.6%) patients were PM-dependent. Neutron-producing RT was used in 37/139 (26.6%) courses, whereas non-neutron-producing RT was used in 102/139 (73.4%) courses. The cumulative dose (Dmax) delivered to the CIED exceeded 5 Gy only in 2/132 (1.5%) cases. Device malfunctions were observed in 3/150 (2%) RT courses, but none was life-threatening or led to a major clinical event and all were resolved by CIED reprogramming. In all cases, the Dmax delivered to the CIED was < 2 Gy. Two malfunctions occurred in the 37 patients treated with neutron-producing RT (5.4%), and 1 malfunction occurred in the 102 patients treated with non-neutron-producing RT (1%) (p = 0.17). Device relocation from the RT field was performed in 2/127 (1.6%) patients. RT in patients with CIED is substantially safe if performed in an appropriately organized environment, with uncommon CIEDs malfunctions and no major clinical events. Neutron-producing energies, rather than Dmax, seem to increase the risk of malfunctions. Device interrogation on a regular basis is advised to promptly manage CIED malfunctions.
Radiotherapy-induced malfunctions of cardiac implantable electronic devices in cancer patients / Malavasi, V. L.; De Marco, G.; Imberti, J. F.; Placentino, F.; Vitolo, M.; Mazzeo, E.; Cicoria, G.; Casali, E.; Turco, V.; Lohr, F.; Boriani, G.. - In: INTERNAL AND EMERGENCY MEDICINE. - ISSN 1828-0447. - 15:6(2020), pp. 967-973. [10.1007/s11739-019-02240-y]
Radiotherapy-induced malfunctions of cardiac implantable electronic devices in cancer patients
Placentino F.;
2020
Abstract
The number of patients with cardiac implantable electronic devices (CIEDs) requiring radiation therapy (RT) for cancer treatment is increasing. The purpose of this study is to estimate the prevalence, possible predictors, and clinical impact of RT-related CIEDs malfunctions. We retrospectively reviewed the medical records of all pacemaker (PM)/implantable cardioverter-defibrillator (ICD) patients who underwent RT in the last 14 years. One hundred and twenty-seven patients who underwent 150 separate RT courses were analysed (99 with a PM and 27 with an ICD). Of note, 21/127 (16.6%) patients were PM-dependent. Neutron-producing RT was used in 37/139 (26.6%) courses, whereas non-neutron-producing RT was used in 102/139 (73.4%) courses. The cumulative dose (Dmax) delivered to the CIED exceeded 5 Gy only in 2/132 (1.5%) cases. Device malfunctions were observed in 3/150 (2%) RT courses, but none was life-threatening or led to a major clinical event and all were resolved by CIED reprogramming. In all cases, the Dmax delivered to the CIED was < 2 Gy. Two malfunctions occurred in the 37 patients treated with neutron-producing RT (5.4%), and 1 malfunction occurred in the 102 patients treated with non-neutron-producing RT (1%) (p = 0.17). Device relocation from the RT field was performed in 2/127 (1.6%) patients. RT in patients with CIED is substantially safe if performed in an appropriately organized environment, with uncommon CIEDs malfunctions and no major clinical events. Neutron-producing energies, rather than Dmax, seem to increase the risk of malfunctions. Device interrogation on a regular basis is advised to promptly manage CIED malfunctions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.