In this paper we develop the unconditional M-quantile regression for modeling unconditional M-quantiles in the presence of covariates. Extending the paper by Firpo et al. (2009), we assess the impact of small changes in the explanatory variables on the M-quantile of the unconditional distribution of the dependent variable by running a mean regression of the recentered influence function of the unconditional M-quantile on the covariates. The proposed methodology is applied on the Survey of Household Income and Wealth (SHIW) 2016 conducted by the Bank of Italy.

Unconditional M-quantile regression / Merlo, Luca; Petrella, Lea; Tzavidis, Nikos. - 128:(2021), pp. 163-166. (Intervento presentato al convegno CLADAG 2021 tenutosi a Firenze; Italy) [10.36253/978-88-5518-340-6].

Unconditional M-quantile regression

Luca Merlo
;
Lea Petrella;
2021

Abstract

In this paper we develop the unconditional M-quantile regression for modeling unconditional M-quantiles in the presence of covariates. Extending the paper by Firpo et al. (2009), we assess the impact of small changes in the explanatory variables on the M-quantile of the unconditional distribution of the dependent variable by running a mean regression of the recentered influence function of the unconditional M-quantile on the covariates. The proposed methodology is applied on the Survey of Household Income and Wealth (SHIW) 2016 conducted by the Bank of Italy.
2021
CLADAG 2021
Influence function; M-estimation; RIF regression; Robust method
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Unconditional M-quantile regression / Merlo, Luca; Petrella, Lea; Tzavidis, Nikos. - 128:(2021), pp. 163-166. (Intervento presentato al convegno CLADAG 2021 tenutosi a Firenze; Italy) [10.36253/978-88-5518-340-6].
File allegati a questo prodotto
File Dimensione Formato  
Merlo_Unconditional-CLADAG_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 757.19 kB
Formato Adobe PDF
757.19 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1567930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact