Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf (S, M) the space of all free immersions phi : S -> M and let B-i(,f)+ (S, M) the quotient space Imm(f) (S, M)/Diff(+) (S), where Diff(+) (S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product chi is an element of Omega(r) (M, TM) and dim S = r - 1 then B(i)(,f)(+)f (S, M) is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that S is a codimension 2 submanifold in M, and S = S-1 or M is a torsion-free G(2)-manifold respectively.

Formally integrable complex structures on higher dimensional knot spaces / Fiorenza, D; Van Le, H. - In: JOURNAL OF SYMPLECTIC GEOMETRY. - ISSN 1527-5256. - 19:3(2021), pp. 507-529. [10.4310/JSG.2021.v19.n3.a1]

Formally integrable complex structures on higher dimensional knot spaces

Fiorenza, D;
2021

Abstract

Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf (S, M) the space of all free immersions phi : S -> M and let B-i(,f)+ (S, M) the quotient space Imm(f) (S, M)/Diff(+) (S), where Diff(+) (S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product chi is an element of Omega(r) (M, TM) and dim S = r - 1 then B(i)(,f)(+)f (S, M) is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that S is a codimension 2 submanifold in M, and S = S-1 or M is a torsion-free G(2)-manifold respectively.
higher dimensional knot spaces; complex structures; vector cross products
01 Pubblicazione su rivista::01a Articolo in rivista
Formally integrable complex structures on higher dimensional knot spaces / Fiorenza, D; Van Le, H. - In: JOURNAL OF SYMPLECTIC GEOMETRY. - ISSN 1527-5256. - 19:3(2021), pp. 507-529. [10.4310/JSG.2021.v19.n3.a1]
File allegati a questo prodotto
File Dimensione Formato  
Fiorenza_Formally_2021.pdf

solo gestori archivio

Note: https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0019/0003/a001/index.php
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 243.25 kB
Formato Adobe PDF
243.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Fiorenza_postprint_Formally_2021.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 239.97 kB
Formato Adobe PDF
239.97 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1567208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact