Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf (S, M) the space of all free immersions phi : S -> M and let B-i(,f)+ (S, M) the quotient space Imm(f) (S, M)/Diff(+) (S), where Diff(+) (S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product chi is an element of Omega(r) (M, TM) and dim S = r - 1 then B(i)(,f)(+)f (S, M) is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that S is a codimension 2 submanifold in M, and S = S-1 or M is a torsion-free G(2)-manifold respectively.
Formally integrable complex structures on higher dimensional knot spaces / Fiorenza, D; Van Le, H. - In: JOURNAL OF SYMPLECTIC GEOMETRY. - ISSN 1527-5256. - 19:3(2021), pp. 507-529. [10.4310/JSG.2021.v19.n3.a1]
Formally integrable complex structures on higher dimensional knot spaces
Fiorenza, D;
2021
Abstract
Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf (S, M) the space of all free immersions phi : S -> M and let B-i(,f)+ (S, M) the quotient space Imm(f) (S, M)/Diff(+) (S), where Diff(+) (S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product chi is an element of Omega(r) (M, TM) and dim S = r - 1 then B(i)(,f)(+)f (S, M) is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that S is a codimension 2 submanifold in M, and S = S-1 or M is a torsion-free G(2)-manifold respectively.File | Dimensione | Formato | |
---|---|---|---|
Fiorenza_Formally_2021.pdf
solo gestori archivio
Note: https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0019/0003/a001/index.php
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
243.25 kB
Formato
Adobe PDF
|
243.25 kB | Adobe PDF | Contatta l'autore |
Fiorenza_postprint_Formally_2021.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
239.97 kB
Formato
Adobe PDF
|
239.97 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.