Complex multidimensional concepts are often explained by a tree-shape structure by considering nested partitions of variables, where each variable group is associated with a specific concept. Recalling that relations among variables can be detected by their covariance matrix, this paper introduces a covariance structure that reconstructs hierarchical relationships among variables highlighting three features of the variable groups. We finally present an application of the latter covariance structure to the model-based clustering.

Model-based clustering with parsimonious covariance structure / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2021), pp. 296-299. (Intervento presentato al convegno 13th scientific meeting of the classification and data analysis group, CLADAG 2021 tenutosi a Florence; Italy (telematico)) [10.36253/978-88-5518-340-6].

Model-based clustering with parsimonious covariance structure

Carlo Cavicchia;Maurizio Vichi;Giorgia Zaccaria
2021

Abstract

Complex multidimensional concepts are often explained by a tree-shape structure by considering nested partitions of variables, where each variable group is associated with a specific concept. Recalling that relations among variables can be detected by their covariance matrix, this paper introduces a covariance structure that reconstructs hierarchical relationships among variables highlighting three features of the variable groups. We finally present an application of the latter covariance structure to the model-based clustering.
2021
13th scientific meeting of the classification and data analysis group, CLADAG 2021
Gaussian mixture model; hierarchical latent concepts; partition of variables
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Model-based clustering with parsimonious covariance structure / Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - (2021), pp. 296-299. (Intervento presentato al convegno 13th scientific meeting of the classification and data analysis group, CLADAG 2021 tenutosi a Florence; Italy (telematico)) [10.36253/978-88-5518-340-6].
File allegati a questo prodotto
File Dimensione Formato  
Zaccaria_Model-based-clustering_frontespizio_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 25.56 kB
Formato Adobe PDF
25.56 kB Adobe PDF
Zaccaria_Model-based-clustering_quarta_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 192.3 kB
Formato Adobe PDF
192.3 kB Adobe PDF
Zaccaria_Model-based-clustering_indice_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 371.81 kB
Formato Adobe PDF
371.81 kB Adobe PDF
Zaccaria_Model-based-clustering_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 172.4 kB
Formato Adobe PDF
172.4 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1567032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact