We consider a Mean Field Games model where the dynamics of the agents is given by a controlled Langevin equation and the cost is quadratic. An appropriate change of variables transforms the Mean Field Games system into a system of two coupled kinetic Fokker–Planck equations. We prove an existence result for the latter system, obtaining consequently existence of a solution for the Mean Field Games system.

A quadratic mean field games model for the langevin equation / Camilli, F.. - In: AXIOMS. - ISSN 2075-1680. - 10:2(2021). [10.3390/axioms10020068]

A quadratic mean field games model for the langevin equation

Camilli F.
2021

Abstract

We consider a Mean Field Games model where the dynamics of the agents is given by a controlled Langevin equation and the cost is quadratic. An appropriate change of variables transforms the Mean Field Games system into a system of two coupled kinetic Fokker–Planck equations. We prove an existence result for the latter system, obtaining consequently existence of a solution for the Mean Field Games system.
2021
hypoel-liptic operators; kinetic Fokker–Planck equation; Langevin equation; mean field games system
01 Pubblicazione su rivista::01a Articolo in rivista
A quadratic mean field games model for the langevin equation / Camilli, F.. - In: AXIOMS. - ISSN 2075-1680. - 10:2(2021). [10.3390/axioms10020068]
File allegati a questo prodotto
File Dimensione Formato  
Camilli_Quadratic_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 259.75 kB
Formato Adobe PDF
259.75 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1566710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact