In this paper, we propose a multivariate quantile regression framework to forecast Value at Risk (VaR) and Expected Shortfall (ES) of multiple financial assets simultaneously, extending Taylor (2019). We generalize the Multivariate Asymmetric Laplace (MAL) joint quantile regression of Petrella and Raponi (2019) to a time-varying setting, which allows us to specify a dynamic process for the evolution of both the VaR and ES of each asset. The proposed methodology accounts for the dependence structure among asset returns. By exploiting the properties of the MAL distribution, we propose a new portfolio optimization method that minimizes portfolio risk and controls for well-known characteristics of financial data. We evaluate the advantages of the proposed approach on both simulated and real data, using weekly returns on three major stock market indices. We show that our method outperforms other existing models and provides more accurate risk measure forecasts than univariate methods.

Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation / Merlo, L.; Petrella, L.; Raponi, V.. - In: JOURNAL OF BANKING & FINANCE. - ISSN 0378-4266. - 133:(2021). [10.1016/j.jbankfin.2021.106248]

Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation

Merlo L.
;
Petrella L.;
2021

Abstract

In this paper, we propose a multivariate quantile regression framework to forecast Value at Risk (VaR) and Expected Shortfall (ES) of multiple financial assets simultaneously, extending Taylor (2019). We generalize the Multivariate Asymmetric Laplace (MAL) joint quantile regression of Petrella and Raponi (2019) to a time-varying setting, which allows us to specify a dynamic process for the evolution of both the VaR and ES of each asset. The proposed methodology accounts for the dependence structure among asset returns. By exploiting the properties of the MAL distribution, we propose a new portfolio optimization method that minimizes portfolio risk and controls for well-known characteristics of financial data. We evaluate the advantages of the proposed approach on both simulated and real data, using weekly returns on three major stock market indices. We show that our method outperforms other existing models and provides more accurate risk measure forecasts than univariate methods.
2021
CAViaR; Expected shortfall; Multiple quantiles; Multivariate asymmetric laplace distribution; Quantile regression; Value at risk
01 Pubblicazione su rivista::01a Articolo in rivista
Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation / Merlo, L.; Petrella, L.; Raponi, V.. - In: JOURNAL OF BANKING & FINANCE. - ISSN 0378-4266. - 133:(2021). [10.1016/j.jbankfin.2021.106248]
File allegati a questo prodotto
File Dimensione Formato  
Merlo_Forecasting-VaR-preprint_2021.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF
Merlo_Forecasting-VaR_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1566195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact