To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score / Prucher, GIAN MARCO; Lapolla, P.; Mingoli, A.; De Toma, G.; Fiori, E.; La Torre, F.; Sapienza, P.; Brachini, G.; Cirillo, B.; Iannone, I.; Zambon, M.; Chiappini, A.; Meneghini, S.; Fonsi, G. B.; Cicerchia, P. M.; Bruzzaniti, P.; Santoro, A.; Frati, A.; Marruzzo, G.; Ribuffo, D.; Covidsurg, Collaborative. - In: BRITISH JOURNAL OF SURGERY. - ISSN 0007-1323. - 108:11(2021), pp. 1274-1292. [10.1093/bjs/znab183]

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

Prucher Gian Marco
;
P. Lapolla;A. Mingoli
;
G. De Toma
;
E. Fiori;F. La Torre;P. Sapienza;G. Brachini;B. Cirillo;I. Iannone;M. Zambon;A. Chiappini;S. Meneghini;G. B. Fonsi;P. M. Cicerchia;P. Bruzzaniti;A. Santoro;A. Frati;G. Marruzzo;D. Ribuffo
;
2021

Abstract

To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.
File allegati a questo prodotto
File Dimensione Formato  
COVIDSurg Collaborative_Machine learning risk_2021.pdf

accesso aperto

Note: https://academic.oup.com/bjs/advance-article/doi/10.1093/bjs/znab183/6316029 https://academic.oup.com/bjs/article/108/11/1274/6316029
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 538.15 kB
Formato Adobe PDF
538.15 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1565968
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact