A novel clustering model for three-way data concerning a set of objects on which variables are measured by different subjects is proposed. The main aim of the model is to summarize the objects through a limited number of clusters. In order to exploit the three-way structure of the data, such clusters are assumed to be common to all subjects and variables and subjects are summarized through the PARAFAC model.

Clustering models for three-way data / Vicari, Donatella; Giordani, Paolo. - (2021), pp. 432-435. (Intervento presentato al convegno 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG2021) tenutosi a Firenze; Italy (virtual conference)).

Clustering models for three-way data

Donatella Vicari;Paolo Giordani
2021

Abstract

A novel clustering model for three-way data concerning a set of objects on which variables are measured by different subjects is proposed. The main aim of the model is to summarize the objects through a limited number of clusters. In order to exploit the three-way structure of the data, such clusters are assumed to be common to all subjects and variables and subjects are summarized through the PARAFAC model.
2021
13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG2021)
K-Means; PARAFAC; variable weighting
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Clustering models for three-way data / Vicari, Donatella; Giordani, Paolo. - (2021), pp. 432-435. (Intervento presentato al convegno 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG2021) tenutosi a Firenze; Italy (virtual conference)).
File allegati a questo prodotto
File Dimensione Formato  
Vicari_Clustering-models_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.67 MB
Formato Adobe PDF
6.67 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1565537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact