Ocean renewable wave power is one of the more encouraging inexhaustible energy sources, with the potential to be exploited for nearly 337 GW worldwide. However, compared with other sources of renewables, wave energy technologies have not been fully developed, and the produced energy price is not as competitive as that of wind or solar renewable technologies. In order to commercialise ocean wave technologies, a wide range of optimisation methodologies have been proposed in the last decade. However, evaluations and comparisons of the performance of state-ofthe-art bio-inspired optimisation algorithms have not been contemplated for wave energy converters’ optimisation. In this work, we conduct a comprehensive investigation, evaluation and comparison of the optimisation of the geometry, tether angles and power take-off (PTO) settings of a wave energy converter (WEC) using bio-inspired swarm-evolutionary optimisation algorithms based on a sample wave regime at a site in the Mediterranean Sea, in the west of Sicily, Italy. An improved version of a recent optimisation algorithm, called the Moth–Flame Optimiser (MFO), is also proposed for this application area. The results demonstrated that the proposed MFO can outperform other optimisation methods in maximising the total power harnessed from a WEC.

Multi-mode wave energy converter design optimisation using an improved moth flame optimisation algorithm / Neshat, M.; Sergiienko, N. Y.; Mirjalili, S.; Majidi Nezhad, M.; Piras, G.; Astiaso Garcia, D.. - In: ENERGIES. - ISSN 1996-1073. - 14:13(2021), pp. 1-17. [10.3390/en14133737]

Multi-mode wave energy converter design optimisation using an improved moth flame optimisation algorithm

Majidi Nezhad M.;Piras G.;Astiaso Garcia D.
2021

Abstract

Ocean renewable wave power is one of the more encouraging inexhaustible energy sources, with the potential to be exploited for nearly 337 GW worldwide. However, compared with other sources of renewables, wave energy technologies have not been fully developed, and the produced energy price is not as competitive as that of wind or solar renewable technologies. In order to commercialise ocean wave technologies, a wide range of optimisation methodologies have been proposed in the last decade. However, evaluations and comparisons of the performance of state-ofthe-art bio-inspired optimisation algorithms have not been contemplated for wave energy converters’ optimisation. In this work, we conduct a comprehensive investigation, evaluation and comparison of the optimisation of the geometry, tether angles and power take-off (PTO) settings of a wave energy converter (WEC) using bio-inspired swarm-evolutionary optimisation algorithms based on a sample wave regime at a site in the Mediterranean Sea, in the west of Sicily, Italy. An improved version of a recent optimisation algorithm, called the Moth–Flame Optimiser (MFO), is also proposed for this application area. The results demonstrated that the proposed MFO can outperform other optimisation methods in maximising the total power harnessed from a WEC.
2021
bio-inspired; evolutionary algorithms; meta-heuristics; moth fame optimisation; optimisation algorithms; power take-off; renewable energy systems; swarm intelligence; wave energy converters
01 Pubblicazione su rivista::01a Articolo in rivista
Multi-mode wave energy converter design optimisation using an improved moth flame optimisation algorithm / Neshat, M.; Sergiienko, N. Y.; Mirjalili, S.; Majidi Nezhad, M.; Piras, G.; Astiaso Garcia, D.. - In: ENERGIES. - ISSN 1996-1073. - 14:13(2021), pp. 1-17. [10.3390/en14133737]
File allegati a questo prodotto
File Dimensione Formato  
Neshat_Multi-mode_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1564382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact