Bioactive peptides are increasingly used in clinical practice. Reversed-phase chromatography using formic or trifluoroacetic acid in the mobile phase is the most widely used technique for their analytical control. However, sometimes it does not prove sufficient to solve challenging chromatographic problems. In the search for alternative elution modes, the dynamic electrostatic repulsion reversed-phase was evaluated to separate eight probe peptides characterised by different molecular weights and isoelectric points. This technique, which involves TBAHSO4 in the mobile phase, provided the lowest asymmetry and peak width at half height values and the highest in peak capacity (about 200 for a gradient of 30 min) and resolution concerning the classic reversed-phase. All analyses were performed using cutting-edge columns developed for peptide separation, and the comparison of the chromatograms obtained shows how the dynamic electrostatic repulsion reversed-phase is an attractive alternative to the classic reversed-phase.
Expanding the use of dynamic electrostatic repulsion reversed-phase chromatography: an effective elution mode for peptides control and analysis / Mazzoccanti, Giulia; Manetto, Simone; Bassan, Michele; Macis, Marco; Iazzetti, Antonia; Cabri, Walter; Ricci, Antonio; Gasparrini, Francesco. - In: MOLECULES. - ISSN 1420-3049. - 26:14(2021). [10.3390/molecules26144348]
Expanding the use of dynamic electrostatic repulsion reversed-phase chromatography: an effective elution mode for peptides control and analysis
Mazzoccanti, Giulia
;Manetto, Simone;Iazzetti, Antonia;Gasparrini, Francesco
2021
Abstract
Bioactive peptides are increasingly used in clinical practice. Reversed-phase chromatography using formic or trifluoroacetic acid in the mobile phase is the most widely used technique for their analytical control. However, sometimes it does not prove sufficient to solve challenging chromatographic problems. In the search for alternative elution modes, the dynamic electrostatic repulsion reversed-phase was evaluated to separate eight probe peptides characterised by different molecular weights and isoelectric points. This technique, which involves TBAHSO4 in the mobile phase, provided the lowest asymmetry and peak width at half height values and the highest in peak capacity (about 200 for a gradient of 30 min) and resolution concerning the classic reversed-phase. All analyses were performed using cutting-edge columns developed for peptide separation, and the comparison of the chromatograms obtained shows how the dynamic electrostatic repulsion reversed-phase is an attractive alternative to the classic reversed-phase.File | Dimensione | Formato | |
---|---|---|---|
Mazzoccanti_Expanding_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.