This article deals with Bayesian interval estimation of the parameter of a statistical model from a decision-theoretic perspective. We consider the class of monotone loss functions, that take into account both size and posterior probability of the sets and that, under general conditions, guarantees the optimality of high- est posterior probability sets. More specifically, we focus on three families of loss functions: linear, rational and exponential. Resorting to numerical examples and simulations, we examine both posterior and pre-posterior features of these choices for the Poisson-Gamma model.
Optimal credible intervals under alternative loss functions / DE SANTIS, Fulvio; Gubbiotti, Stefania. - (2021), pp. 1618-1623. (Intervento presentato al convegno 50th Meeting of the Italian Statistical Society tenutosi a Pisa).
Optimal credible intervals under alternative loss functions
Fulvio De SANTIS;Stefania GUBBIOTTi
2021
Abstract
This article deals with Bayesian interval estimation of the parameter of a statistical model from a decision-theoretic perspective. We consider the class of monotone loss functions, that take into account both size and posterior probability of the sets and that, under general conditions, guarantees the optimality of high- est posterior probability sets. More specifically, we focus on three families of loss functions: linear, rational and exponential. Resorting to numerical examples and simulations, we examine both posterior and pre-posterior features of these choices for the Poisson-Gamma model.File | Dimensione | Formato | |
---|---|---|---|
De Santis_Optimal-credible-intervals_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
462.26 kB
Formato
Adobe PDF
|
462.26 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.