Clusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev-Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the possible mass biases that can be introduced when this hypothesis is not valid. In this work, we analysed a set of 260 synthetic clusters from the MUSIC simulation project at redshifts 0 ≤ z ≤ 0.82. We estimate the hydrostatic mass of the MUSIC clusters from X-ray only (temperature and density) and from X-ray and SZ (density and pressure). Then, we compare them with the true 3D dynamical mass. The biases are of the order of 20 per cent. We find that using the temperature instead of the pressure leads to a smaller bias, although the two values are compatible within 1σ. Non-thermal contributions to the total pressure support, arising from bulk motion and turbulence of the gas, are also computed and show that they are sufficient to account for this bias. We also present a study of the correlation between the mass bias and the dynamical state of the clusters. A clear correlation is shown between the relaxation state of the clusters and the bias factor. We applied the same analysis on a subsample of 32 objects, already selected for supporting the NIKA2 SZ Large Program.

Exploring the hydrostatic mass bias in MUSIC clusters: Application to the NIKA2 mock sample / Gianfagna, G.; De Petris, M.; Yepes, G.; De Luca, F.; Sembolini, F.; Cui, W.; Biffi, V.; Keruzore, F.; Macias-Perez, J.; Mayet, F.; Perotto, L.; Rasia, E.; Ruppin, F.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 502:4(2021), pp. 5115-5133. [10.1093/mnras/stab308]

Exploring the hydrostatic mass bias in MUSIC clusters: Application to the NIKA2 mock sample

Gianfagna G.;De Petris M.;De Luca F.;
2021

Abstract

Clusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev-Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the possible mass biases that can be introduced when this hypothesis is not valid. In this work, we analysed a set of 260 synthetic clusters from the MUSIC simulation project at redshifts 0 ≤ z ≤ 0.82. We estimate the hydrostatic mass of the MUSIC clusters from X-ray only (temperature and density) and from X-ray and SZ (density and pressure). Then, we compare them with the true 3D dynamical mass. The biases are of the order of 20 per cent. We find that using the temperature instead of the pressure leads to a smaller bias, although the two values are compatible within 1σ. Non-thermal contributions to the total pressure support, arising from bulk motion and turbulence of the gas, are also computed and show that they are sufficient to account for this bias. We also present a study of the correlation between the mass bias and the dynamical state of the clusters. A clear correlation is shown between the relaxation state of the clusters and the bias factor. We applied the same analysis on a subsample of 32 objects, already selected for supporting the NIKA2 SZ Large Program.
2021
galaxies: clusters: general; galaxies: clusters: intracluster medium; large-scale structure of Universe; methods: numerical
01 Pubblicazione su rivista::01a Articolo in rivista
Exploring the hydrostatic mass bias in MUSIC clusters: Application to the NIKA2 mock sample / Gianfagna, G.; De Petris, M.; Yepes, G.; De Luca, F.; Sembolini, F.; Cui, W.; Biffi, V.; Keruzore, F.; Macias-Perez, J.; Mayet, F.; Perotto, L.; Rasia, E.; Ruppin, F.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 502:4(2021), pp. 5115-5133. [10.1093/mnras/stab308]
File allegati a questo prodotto
File Dimensione Formato  
Gianfagna_Exploring the hydrostatic_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1561011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 22
social impact