The topography provided by altimetry, synthetic aperture radar-topography, and stereo radargrammetry has opened new doors for Titan research by allowing for quantitative analysis of morphologic form. Using altimetry measurements, we show that Titan's Maria are consistent with an equipotential surface but that several filled lakes are found to be hundreds of meters above this sea level, suggesting that they exist in isolated or perched basins. Within a given drainage basin, empty lake floors are typically higher than the liquid elevation of nearby lakes/seas, suggesting local subsurface connectivity. The majority of Titan's lakes reside in topographically closed, sharp-edged depressions whose planform curvature suggests lateral expansion through uniform scarp retreat. Many, but not all, empty lake basins exhibit flat floors and hectometer-scale raised rims that present a challenge to formation models. We conclude that dissolution erosion can best match the observed constraints but that challenges remain in the interpretation of formation processes and materials.
Topographic constraints on the evolution and connectivity of Titan's lacustrine basins / Alexander, G Hayes; Spd, Birch; William, E Dietrich; Alan, D Howard; Randolph, L Kirk; V, Poggiali; Mastrogiuseppe, M; Rj, Michaelides; Pm, Corlies; Jm, Moore; Mj, Malaska; Kl, Mitchell; Rd, Lorenz; Ca, Wood. - In: GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - 44:23(2017), pp. 11745-11753. [10.1002/2017GL075468]
Topographic constraints on the evolution and connectivity of Titan's lacustrine basins
Mastrogiuseppe M;
2017
Abstract
The topography provided by altimetry, synthetic aperture radar-topography, and stereo radargrammetry has opened new doors for Titan research by allowing for quantitative analysis of morphologic form. Using altimetry measurements, we show that Titan's Maria are consistent with an equipotential surface but that several filled lakes are found to be hundreds of meters above this sea level, suggesting that they exist in isolated or perched basins. Within a given drainage basin, empty lake floors are typically higher than the liquid elevation of nearby lakes/seas, suggesting local subsurface connectivity. The majority of Titan's lakes reside in topographically closed, sharp-edged depressions whose planform curvature suggests lateral expansion through uniform scarp retreat. Many, but not all, empty lake basins exhibit flat floors and hectometer-scale raised rims that present a challenge to formation models. We conclude that dissolution erosion can best match the observed constraints but that challenges remain in the interpretation of formation processes and materials.File | Dimensione | Formato | |
---|---|---|---|
Hayes1_Topographic-constraints_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.