Future missions to the Moon and Mars will require advanced Guidance, Navigation, and Control (GNC) algorithms for the powered descent phase. GNC tasks are generally performed by independent modules. In this paper, reinforcement metalearning and hazard detection and avoidance are embedded into a single system to derive the optimal thrust command for a safe lunar pinpoint landing using sequences of images and radar altimeter data as inputs. In particular, we incorporate autonomous hazard detection and avoidance and real-time GNC, which are essential for a successful landing. The former are achieved using a machine learning model trained in a supervised fashion to recognize hazardous areas in the camera field of view and selecting a safe point accordingly. Then, within the reinforcement meta-learning framework, this information is used by the agent to learn how to optimally behave in this simulated environment and land safely.

Safe lunar landing via images: a reinforcement meta-learning application to autonomous hazard avoidance and landing / Scorsoglio, A.; D’Ambrosio, Andrea; Scorsoglio, A.; Ghilardi, L.; Furfaro, R; Gaudet, B.; Linares, R.; Curti, F.. - 175:(2021), pp. 91-110. (Intervento presentato al convegno 2020 AAS/AIAA Astrodynamics Specialist Conference tenutosi a Lake Tahoe (CA-USA)).

Safe lunar landing via images: a reinforcement meta-learning application to autonomous hazard avoidance and landing

D’Ambrosio, Andrea;Curti, F.
2021

Abstract

Future missions to the Moon and Mars will require advanced Guidance, Navigation, and Control (GNC) algorithms for the powered descent phase. GNC tasks are generally performed by independent modules. In this paper, reinforcement metalearning and hazard detection and avoidance are embedded into a single system to derive the optimal thrust command for a safe lunar pinpoint landing using sequences of images and radar altimeter data as inputs. In particular, we incorporate autonomous hazard detection and avoidance and real-time GNC, which are essential for a successful landing. The former are achieved using a machine learning model trained in a supervised fashion to recognize hazardous areas in the camera field of view and selecting a safe point accordingly. Then, within the reinforcement meta-learning framework, this information is used by the agent to learn how to optimally behave in this simulated environment and land safely.
2021
2020 AAS/AIAA Astrodynamics Specialist Conference
aerospace engineering; space systems; lunar landing; hazard detection and avoidance; reinforcement meta-learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Safe lunar landing via images: a reinforcement meta-learning application to autonomous hazard avoidance and landing / Scorsoglio, A.; D’Ambrosio, Andrea; Scorsoglio, A.; Ghilardi, L.; Furfaro, R; Gaudet, B.; Linares, R.; Curti, F.. - 175:(2021), pp. 91-110. (Intervento presentato al convegno 2020 AAS/AIAA Astrodynamics Specialist Conference tenutosi a Lake Tahoe (CA-USA)).
File allegati a questo prodotto
File Dimensione Formato  
Scorsoglio_Safe_2021.pdf

solo gestori archivio

Note: http://www.univelt.com/book=8177
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 9.77 MB
Formato Adobe PDF
9.77 MB Adobe PDF   Contatta l'autore
Scorsoglio_indice-frontespizio_Safe_2021.pdf

solo gestori archivio

Note: http://www.univelt.com/book=8476
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 303.92 kB
Formato Adobe PDF
303.92 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1559932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact