One of the current challenges in nanoscience is tailoring the phononic properties of a material. This has long been a rather elusive task because several phonons have wavelengths in the nanometer range. Thus, high quality nanostructuring at that length-scale, unavailable until recently, is necessary for engineering the phonon spectrum. Here we report on the continuous tuning of the phononic properties of a twinning superlattice GaP nanowire by controlling its periodicity. Our experimental results, based on Raman spectroscopy and rationalized by means of ab initio theoretical calculations, give insight into the relation between local crystal structure, overall lattice symmetry, and vibrational properties, demonstrating how material engineering at the nanoscale can be successfully employed in the rational design of the phonon spectrum of a material.
Phonon Engineering in Twinning Superlattice Nanowires / De Luca, M; Fasolato, C; Verheijen, Ma; Ren, Yz; Swinkels, My; Kolling, S; Bakkers, Epam; Rurali, R; Cartoixa, X; Zardo, I. - In: NANO LETTERS. - ISSN 1530-6984. - 19:7(2019), pp. 4702-4711.
Phonon Engineering in Twinning Superlattice Nanowires
De Luca, M;Fasolato, C;
2019
Abstract
One of the current challenges in nanoscience is tailoring the phononic properties of a material. This has long been a rather elusive task because several phonons have wavelengths in the nanometer range. Thus, high quality nanostructuring at that length-scale, unavailable until recently, is necessary for engineering the phonon spectrum. Here we report on the continuous tuning of the phononic properties of a twinning superlattice GaP nanowire by controlling its periodicity. Our experimental results, based on Raman spectroscopy and rationalized by means of ab initio theoretical calculations, give insight into the relation between local crystal structure, overall lattice symmetry, and vibrational properties, demonstrating how material engineering at the nanoscale can be successfully employed in the rational design of the phonon spectrum of a material.File | Dimensione | Formato | |
---|---|---|---|
De Luca_Phonon Engineering_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.