We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the L2 spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisfies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.

Sharp tunneling estimates for a double-well model in infinite dimension / Brooks, M.; Di Gesù, G. F.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 281:3(2021). [10.1016/j.jfa.2021.109029]

Sharp tunneling estimates for a double-well model in infinite dimension

Di Gesù G. F.
2021

Abstract

We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the L2 spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisfies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.
2021
Metastability; semiclassical spectral theory; stochastic Allen-Cahn equation; witten laplacian
01 Pubblicazione su rivista::01a Articolo in rivista
Sharp tunneling estimates for a double-well model in infinite dimension / Brooks, M.; Di Gesù, G. F.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 281:3(2021). [10.1016/j.jfa.2021.109029]
File allegati a questo prodotto
File Dimensione Formato  
DiGesu_Sharp-tunneling-estimates_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 775.72 kB
Formato Adobe PDF
775.72 kB Adobe PDF   Contatta l'autore
DiGesu_preprint_Sharp-tunneling-estimates_2021.pdf.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 362.78 kB
Formato Adobe PDF
362.78 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1557715
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact