When the genus g is even, we extend the computation of mod 2 cohomological invariants of ℋgto non algebraically closed fields, we give an explicit functorial description of the invariants and we completely describe their multiplicative structure. In the Appendix, we show that the cohomological invariants of the compactification (Formula presented)gare trivial, and use our methods to give a very short proof of a result by Cornalba on the Picard group of the compactification (Formula presented)gand extend it to positive characteristic.

A Complete Description of the Cohomological Invariants of Even Genus Hyperelliptic Curves / Di Lorenzo, A.; Pirisi, R.. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0635. - 26:(2021), pp. 199-230. [10.25537/dm.2021v26.199-230]

A Complete Description of the Cohomological Invariants of Even Genus Hyperelliptic Curves

Pirisi R.
Co-primo
2021

Abstract

When the genus g is even, we extend the computation of mod 2 cohomological invariants of ℋgto non algebraically closed fields, we give an explicit functorial description of the invariants and we completely describe their multiplicative structure. In the Appendix, we show that the cohomological invariants of the compactification (Formula presented)gare trivial, and use our methods to give a very short proof of a result by Cornalba on the Picard group of the compactification (Formula presented)gand extend it to positive characteristic.
2021
Chow groups with coefficients; cohomological invariants; moduli of hyperelliptic curves
01 Pubblicazione su rivista::01a Articolo in rivista
A Complete Description of the Cohomological Invariants of Even Genus Hyperelliptic Curves / Di Lorenzo, A.; Pirisi, R.. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0635. - 26:(2021), pp. 199-230. [10.25537/dm.2021v26.199-230]
File allegati a questo prodotto
File Dimensione Formato  
DiLorenzo_A-complete-description_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 342.47 kB
Formato Adobe PDF
342.47 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1557466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact