We consider nonconvex constrained optimization problems and propose a newapproach to the convergence analysis based on penalty functions. We make use of classicalpenalty functions in an unconventional way, in that penalty functions only enter in thetheoretical analysis of convergence while the algorithm itself is penalty free. Based on thisidea, we are able to establish several new results, including thefirst general analysis fordiminishing stepsize methods in nonconvex, constrained optimization, showing con-vergence to generalized stationary points, and a complexity study for sequential quadraticprogramming–type algorithms.

Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity / Facchinei, Francisco; Kungurtsev, Vyacheslav; Lampariello, Lorenzo; Scutari, Gesualdo. - In: MATHEMATICS OF OPERATIONS RESEARCH. - ISSN 0364-765X. - 46:2(2021), pp. 595-627. [10.1287/moor.2020.1079]

Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity

Facchinei, Francisco;
2021

Abstract

We consider nonconvex constrained optimization problems and propose a newapproach to the convergence analysis based on penalty functions. We make use of classicalpenalty functions in an unconventional way, in that penalty functions only enter in thetheoretical analysis of convergence while the algorithm itself is penalty free. Based on thisidea, we are able to establish several new results, including thefirst general analysis fordiminishing stepsize methods in nonconvex, constrained optimization, showing con-vergence to generalized stationary points, and a complexity study for sequential quadraticprogramming–type algorithms.
2021
constrained optimization; nonconvex problem; diminishing stepsize; generalized stationary point; iteration complexity
01 Pubblicazione su rivista::01a Articolo in rivista
Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity / Facchinei, Francisco; Kungurtsev, Vyacheslav; Lampariello, Lorenzo; Scutari, Gesualdo. - In: MATHEMATICS OF OPERATIONS RESEARCH. - ISSN 0364-765X. - 46:2(2021), pp. 595-627. [10.1287/moor.2020.1079]
File allegati a questo prodotto
File Dimensione Formato  
Facchinei_preprint_Ghost_2021.pdf

accesso aperto

Note: https://pubsonline.informs.org/doi/pdf/10.1287/moor.2020.1079
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF
Facchinei_Ghost_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1556594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 8
social impact