L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.

Pathophysiological mechanisms and experimental pharmacotherapy for L-Dopa-induced dyskinesia / Fabbrini, A.; Guerra, A.. - In: JOURNAL OF EXPERIMENTAL PHARMACOLOGY. - ISSN 1179-1454. - 13:(2021), pp. 469-485. [10.2147/JEP.S265282]

Pathophysiological mechanisms and experimental pharmacotherapy for L-Dopa-induced dyskinesia

Fabbrini A.;Guerra A.
2021

Abstract

L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
2021
Dyskinesia; Glutamate; L-dopa; Parkinson’s disease; Serotonin; Therapy
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Pathophysiological mechanisms and experimental pharmacotherapy for L-Dopa-induced dyskinesia / Fabbrini, A.; Guerra, A.. - In: JOURNAL OF EXPERIMENTAL PHARMACOLOGY. - ISSN 1179-1454. - 13:(2021), pp. 469-485. [10.2147/JEP.S265282]
File allegati a questo prodotto
File Dimensione Formato  
Fabbrini_L-dopa_Dyskinesia_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 508.02 kB
Formato Adobe PDF
508.02 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1555338
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact