In this paper, we study diffusion equations involving Hadamard-type time-fractional derivatives related to ultra-slow random models. We start our analysis using the abstract fractional Cauchy problem, replacing the classical time derivative with the Hadamard operator. The stochastic meaning of the introduced abstract differential equation is provided, and the application to the particular case of the fractional heat equation is then discussed in detail. The ultra-slow behaviour emerges from the explicit form of the variance of the random process arising from our analysis. Finally, we obtain a particular solution for the nonlinear Hadamard-diffusive equation.

Hadamard-Type Fractional Heat Equations and Ultra-Slow Diffusions / DE GREGORIO, Alessandro; Garra, Roberto. - In: FRACTAL AND FRACTIONAL. - ISSN 2504-3110. - (2021).

Hadamard-Type Fractional Heat Equations and Ultra-Slow Diffusions

Alessandro De Gregorio;Roberto Garra
2021

Abstract

In this paper, we study diffusion equations involving Hadamard-type time-fractional derivatives related to ultra-slow random models. We start our analysis using the abstract fractional Cauchy problem, replacing the classical time derivative with the Hadamard operator. The stochastic meaning of the introduced abstract differential equation is provided, and the application to the particular case of the fractional heat equation is then discussed in detail. The ultra-slow behaviour emerges from the explicit form of the variance of the random process arising from our analysis. Finally, we obtain a particular solution for the nonlinear Hadamard-diffusive equation.
2021
anomalous diffusions; Hadamard fractional derivatives; inverse stable subordinators; Lévy processes
01 Pubblicazione su rivista::01a Articolo in rivista
Hadamard-Type Fractional Heat Equations and Ultra-Slow Diffusions / DE GREGORIO, Alessandro; Garra, Roberto. - In: FRACTAL AND FRACTIONAL. - ISSN 2504-3110. - (2021).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1554577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact