The Mittag-Leffler function is universally acclaimed as the Queen function of fractional calculus. The aim of this work is to survey the key results and applications emerging from the three-parameter generalization of this function, known as the Prabhakar function. Specifically, after reviewing key historical events that led to the discovery and modern development of this peculiar function, we discuss how the latter allows one to introduce an enhanced scheme for fractional calculus. Then, we summarize the progress in the application of this new general framework to physics and renewal processes. We also provide a collection of results on the numerical evaluation of the Prabhakar function.

A practical guide to Prabhakar fractional calculus / Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F.. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 23:1(2020), pp. 9-54. [10.1515/fca-2020-0002]

A practical guide to Prabhakar fractional calculus

Garra R.;Polito F.;Mainardi F.
2020

Abstract

The Mittag-Leffler function is universally acclaimed as the Queen function of fractional calculus. The aim of this work is to survey the key results and applications emerging from the three-parameter generalization of this function, known as the Prabhakar function. Specifically, after reviewing key historical events that led to the discovery and modern development of this peculiar function, we discuss how the latter allows one to introduce an enhanced scheme for fractional calculus. Then, we summarize the progress in the application of this new general framework to physics and renewal processes. We also provide a collection of results on the numerical evaluation of the Prabhakar function.
2020
anomalous physical phenomena; numerical methods; Prabhakar fractional calculus; Prabhakar function; stochastic processes; Words and Phrases: Mittag-Leffler type functions
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
A practical guide to Prabhakar fractional calculus / Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F.. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 23:1(2020), pp. 9-54. [10.1515/fca-2020-0002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1554570
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 108
social impact